Falsifying scientific data: Blot on Indian science

Posted in Blogs (Articles) on December 31st, 2014 by Rajesh Kochhar – Be the first to comment

Rajesh Kochhar

Scientific frauds take place all over the world. Once the news breaks out, a country which holds science in high esteem takes swift and stern action so that the fraud is seen as an individual aberration and not systemic failure. It is disconcerting to note that the exposure of major frauds in Indian science has come from foreigners and not from within the Indian science community. There is no sense of outrage; the reaction is forced rather than spontaneous; and the action is minimal and reluctant. It is as if India likes to dabble in basic science because it is profitable at national and international level; but if any vitiation takes place, it is not our concern because after all it is ‘their’ science.

The international prestige of CSIR’s Chandigarh-based Institute of Microbial Technology (IMTech) has taken a severe beating because of the discovery that its scientists have published papers based on fabricated data. Four papers were submitted within a short span of six months, January-July 2013 and published the same year between April and October. They were retracted by the journals on 9 July 2014 on a request by CSIR which had carried out its in-house investigations following a complaint. In the meantime, some other researchers taking these papers at face value cited them in their own work. It is certain that two other 2013 papers are also fraudulent whose retraction is a matter of time. Another publication is a review essay which cites the tainted papers. It is not immediately obvious what impact this has on the review as whole. It will need some serious  effort to detox science from the effects of the Chandigarh fraud.

The first author in all the cases is a post-doc, Fazlurrahman Khan. Khan obtained his PhD from IMTech and proceeded to Georgia Institute of Technology to work in a lab there. Young men and women after their doctorate routinely go to USA for training. In Khan’s case the knowledge he gained there was not sufficient to advance science but was more than enough for subverting it. His lab professor, Jim Spain, recently recalled : ‘Khan worked in my lab for several months early in 2012 until I strongly suspected he was fabricating data.’ Khan returned to India and obtained  a two-year appointment as a Research Associate funded by the central government’s Department of Biotechnology(DBT), choosing to work at IMTech. Spain points out that Khan obtained ideas, results and conclusions from the former’s lab and fabricated data in his host institution to go with them. In this exercise, he was able to enlist the group leader, Swaranjit Singh Cameotra, as a willing accomplice.

Journals these days require multiple authors to state their individual contributions. Khan and Cameotra ‘conceived and designed’ the experiments which were carried out by Khan and the PhD scholars. Data so obtained was placed in the hands of Khan and Cameotra who analysed it and prepared the paper, with the latter taking charge of correspondence with the editors. Note that of all the authors, Cameotra is the only regular employee of CSIR.

According to official IMTech sources, Khan has since resigned from the Institute. This cannot be true in a strict administrative sense. Khan was being funded by DBT; IMTech was merely hosting him. If Khan had to resign, his resignation would have had to be accepted by DBT. It may even be that the term of his two-year associateship ended. If he indeed was permitted to resign, it is most unfortunate, because his evidence would have been vital.

It now turns out that other scientists at IMTech had viewed goings-on in Cameotra’s lab with great suspicion. According to a Times of India report, it is now being pointed out that according to log book entries, the experimental data was obtained in two months’ time, whereas a genuine experiment would have required at least six months. There have even been doubts whether the instruments required for generating the type of data reported are available in the Institute. The international prestige of Indian science would have been enhanced if the exposure of the fraud had come from within the Institute.

As it is, it was left to Jim Spain to blow the whistle. It goes to CSIR’s credit that once the fraud was brought to its notice, it immediately verified the facts and asked for retraction of the fake papers. This alacrity stands in sharp contrast to the situation prevailing two decades ago when a Panjab University paleontologist, Viswa Jit Gupta, was lightly let off by the University even though serious charges of falsifying numerous fossil discoveries in the Himalayas stood proved.

CSIR has now charge sheeted Cameotra. Government disciplinary proceedings are a long-drawn affair. One hopes that CSIR would follow the case to its logical end. It should be kept in mind that eventually even if the fraudulent scientist is held guilty, quantum of punishment can vary drastically: from mere stoppage of annual salary increment to outright dismissal. Since administrative rules are clearer cut and well-tested compared to scientific rules, it needs to be pointed out that IMTech would have paid publication charges for getting retracted papers published. A scientist submitting fraudulent research for publication and asking the government to pay for it is guilty of causing loss to national exchequer.

Scientific misconduct is of various types. Falsification of data is a far more serious offence than plagiarism. There is need to brand serious scientific misconduct as crime. If this were already the case, Khan could have been summoned to give evidence.  The most sordid part of the recent elaborate fraud is the misuse of PhD scholars.  The most important task of a scientist or an academic is to mentor the young generation. Here, the seniors for their own selfish ends are converting young scholars into criminals. Young bright men and women enroll at a prestigious institute to advance their careers by enriching science. While many of them are no doubt tempted by the shortcuts their seniors offer, others may be too scared to blow the whistle. Serious scientific misconduct like fabrication of data should be recognized as a crime. At the same time, it is important to create a system which encourages whistle blowing and protects whistle blowers.

Finally, a fundamental point needs to be made. Throughout the world, there is an excessive pressure on scientists to do high-impact, world-class research. First we create rat race for scientists and then complain that they have become rats.

(The author is a former Director of National Institute of Science, Technology and Development Studies (CSIR), New Delhi.)

Indian geography under European auspices during 16-18th centuries

Posted in Blogs (Articles) on November 21st, 2014 by Rajesh Kochhar – Be the first to comment

British traders became a territorial power in Bengal in 1757. Within 60 years they had the whole of India under their control. The British in India had their tasks clearly laid out from the very beginning. Administration had to be set up in the acquired territories; new lands had to be conquered; and land revenue ( and trade profits) enhanced. Military geography went hand in hand with the administrative.

(i) Whatever geographical information was available in pre-existing scientific and political documents was taken out and utilized. (ii) Local people were hired as messengers to bring in intelligence on routes, roads, rivers, bridges, hills, etc.
(iii) Jesuits and ex-Jesuits took modern measurements and obtained valuable primary data.
(iv) Whenever an opportunity presented itself, Company officials made surveys.
(v) Lastly, as soon as it became possible, an exhaustive systematic field survey was ordered.
The geographic and geodesic work done in India under European auspices during the 17th and 18th centuries got eclipsed by the spectacular 19th century developments (epitomised by the naming of the highest point on the earth after a surveyor-general), it was solid and extremely significant in its time.

History of Astronomy under the auspices of International Astronomical Union

Posted in Blogs (Articles) on November 2nd, 2014 by Rajesh Kochhar – Be the first to comment

Rajesh Kochhar

President IAU Commission 41: History of Astronomy

International Astronomical Union was formed after the First World War although it became truly international only after the Second World War. Its Commission 41 on History of Astronomy (C41) was set up in 1948 and in a few years established itself as an active and influential unit. It has the distinction of being a joint Commission, the other partner being International Union of History and Philosophy of Science and Technology (IUHPS). Since IAU is an internationally respected body of professional astronomers, its support for history of enhances the credibility of the discipline in the eyes of science establishments of individual countries. C41 is committed to advancing objective and rigorous world history of astronomy taking into account all its aspects.

International cooperation

Collaboration and cooperation are inbuilt into astronomy. It is remarkable that to know our position on the Earth, we must take the help of the sky. While an observer can determine their location, north or south of equator, through a personal arrangement with the sky, the east-west coordinate must be defined with respect to a terrestrial collaborator located elsewhere. An astronomical event is unrepeatable and each observation of it is unique. No observatory, no matter how well equipped or capably staffed, can have access to the whole celestial sphere nor can it replicate what others are doing.

An early systematic initiative in international cooperation in the 19th century was the establishment of a central bureau for astronomical telegrams at Kiel, in 1882, put in place in time for the great comet of that year.[1]  ‘The development of photographic methods had led a number of astronomers to think that the time had come for securing as complete a map as possible of the whole heavens’.[2] Accordingly, at a meeting held in Paris in 1887, a Permanent Commission was set up to carry forward the project of a Carte du Ciel (of which USA was not a part). George Ellery Hale in USA in 1904, working under the auspices of US Academy of Sciences, took the lead in establishing the International Union for Cooperation in Solar Research.[3] In a more focused manner, in 1906, Jacobus Cornelius Kapteyn launched an enormous project, involving 40 different observatories, for studying the distribution of stars in the Milky Way Galaxy, which at the time was presumed to be the whole Universe.[4]

The outbreak of the First World War in 1914 put a stop to these international initiatives. ‘[E]ven when the war was over, the bitter feelings it left behind precluded in many cases easy co-operation for some years between those of the opposing sides.’[5]


Immediately after the First World War, three meetings of the leading men of science of the allied countries were held at London, Paris and Brussels during 1918-1919 to ‘set in motion, so far as they could, the wheels of international co-operation’ 5, the word international being used in a restrictive sense because the original membership was meant only for allied countries. An International Research Council[6] along with its various constituent unions including International Astronomical Union (IAU) was formed at Brussels in July 1919 .5,[7],[8]

Neutral countries were invited to join the Union which they did at the first General Assembly held at Rome in 1922. (Table 1 lists all the General Assemblies held or scheduled so far.)


Table 1. Date and Place of  IAU General Assemblies, 1922-2019

 No. Year Place of General Assembly
1 1922 Rome, Italy
2 1925 Cambridge, UK
3 1928 Leiden, Netherlands
4 1932 Cambridge, USA
5 1935 Paris, France
6 1938 Stockholm, Sweden
7 1948 Zurich, Switzerland
8 1952 Rome, Italy
9 1955 Dublin, Ireland
10 1958 Moscow. USSR
11 1961 Berkeley, USA
12 1964 Hamburg, West Germany
13 1967 Prague, Czech Republic
14 1970 Brighton, UK
15* 1973 Sydney, Australia
Year Place of General Assembly
16 1976 Grenoble, France
17 1979 Montreal, Canada
18 1982 Patras. Greece
19 1985 New Delhi, India
20 1988 Baltimore, USA
21 1991 Buenos Aires, Argentina
22 1994 The Hague, Netherlands
23 1997 Kyoto, Japan
24 2000 Manchester, UK
25 2003 Sydney, Australia
26 2006 Prague, Czech Republic
27 2009 Rio de Janeiro, Brazil
28 2012 Beijing, China
29 2015 Honolulu, USA
30 2018 Vienna, Austria

* An Extraordinary General Assembly was held in Warsaw, Poland, in commemoration of Copernicus’ 500th birth anniversary

‘After some years of hesitation, limitations to the membership were removed in 1926 and invitations for co-operation were addressed to Germany, Austria, and Hungary. 8 However it was only in 1947 that Hungary became a member while Germany and Austria joined five years later, in 1952. With a view to accommodating astronomers from what were officially dubbed enemy countries, IAU introduced the concept of individual members as distinct from country members. IAU remains unique among international bodies on this count.

After the Second World War, the Cold War weighed heavily on everybody’s mind as can be seen from Harlow Shapley’s account of the 1948 Zürich Assembly published in the American journal Science.[9] Shapley began by mentioning ‘the difficulties of communication and cooperation’ between the Soviet Bloc on the one hand and Western Europe and North America on the other.  Shapley assured the readers that though the Soviet and East European astronomers took an ‘active’ part in the week-long activities, it was ‘by no means dominating’. Self-consciously and laboriously, Shapley emphasized the role assigned to Soviet Bloc astronomers even at the Commission and Working Group level. Of course, a true highlight at Zurich was the election of the Russian astrophysicist, Viktor AmazaspovichAmbartsumian, as one of the Vice-Presidents. He would serve as Vice-President for two terms, from 1948 till 1955, and take over as President in 1961 for a three-year term.

The next Assembly got caught up in Cold War. It was decided to hold it in Leningrad at the invitation of the USSR Academy of Sciences, but the meeting was cancelled because of the outbreak of the Korean War in 1950. The 8th Assembly was finally held in 1952 at Rome. It goes to the credit of Soviet astronomers that, taking an extended view of things, they decided not to over-react to the cancellation.  Moscow came to host the 10th General Assembly in 1958. This well-organized meeting was diplomatically significant also. It came ‘at the start of the replacement of an era of confrontation with an era of cooperation known as Khrushchev’s Thaw’.As Adriaan Blaauw later put it, astronomers’ hospitality prevailed over political hostility. [10]

History of Astronomy: Early years

IAU took note of history of astronomy three decades after its formation. As early as 1927 an International Academy of the History of Science had come into existence. It was however a rather elitist group ‘whose members were mostly scholars focused on history’.[11] In 1947, UNESCO set up International Union of History of Science and affiliated it  to International Council of Scientific Union (ICSU). (IUHS was merged into an enlarged IUHPS in 1955). Commission 41 for History of Science was formed in 1948. The IUHS and C41 played a major role in establishing the credentials of history of science (including astronomy) as science rather than as history. C41 was the first international entity devoted exclusively to the history of astronomical sciences. In a divisive world marred by confrontations and suspicions, joint European astronomical heritage would provide a welcome refuge to all.

The nascent Commission did face a threat, but curiously it came from within. Otto Neugebauer who was elected the first President was of the strong and repeatedly articulated opinion that an organized international forum like Commission 41 had ‘no positive function’. He finally resigned and the IAU Executive Committee appointed Herbert Dingle as the Acting President in preparation for the 1922 Rome General Assembly. Dingle went on to lead the Commission as its regular President for two consecutive terms from 1952 to 1958. Dingle was succeeded by the Soviet astronomer, P. G. Kulikovsky, who also served for two terms, 1958-1964. Kulikovsky was an internationalist and a capable organizer. He played a leading role in organizing the 1958 Moscow General Assembly, and before that set up a national Commission for History of Science within USSR Academy of Sciences of which he remained the chairman. Table 2 lists all Commission 41 Presidents from 1948 till 2015.


Table 2. Presidents of IAU Commission 41: History of Astronomy, 1948-2015

Period C41 President Country
1948-1952 Otto Neugebauer USA
1952-1955 Herbert Dingle UK
1955-1958 Herbert Dingle UK
1958-1961 Piotr Grigorevich Kulikovsky USSR
1961-1964 Piotr Grigorevich Kulikovsky USSR
1964-1967 Eugeniusz Rybka Poland
1967-1970 Eugeniusz Rybka Poland
1970-1973 Owen Gingerich USA
1973-1976 Owen Gingerich USA
1976-1979 Jerzy Dobrzycki Poland
1976-1982 Michael  Hoskin UK
1982-1985 Olaf  Pedersen Denmark
1985-1988 John A. Eddy USA
1988-1991 John North UK
1991-1994 Suzanne Debarbat France
1994-1997 S. M. Razaullah Ansari India
1997-2000 Steven J. Dick USA
2000-2003 F. Richard Stephenson UK
2003-2006 Alexander Gurshtein Russia
2006-2009 Nha Il-Seong South Korea
2009-2012 Clive Ruggles UK
2012-2015 Rajesh Kochhar India

Neugebauer’s persistent opposition served a useful purpose. It compelled astronomers and historians ‘to define the scope of the Commission and to determine the nature of its activities’.[12] There was complete unanimity in rejecting his contentions. Every one recognized the special nature of C41 and spoke in favour of its continuance. After the first four years of uncertainty, C41 stabilized itself and would go from strength to strength in the years to come.

Commission members were conscious of the fact that there were many historians of astronomy and other interested scholars who not being practising astronomers were not members of IAU and therefore of C41. They were co-opted as consulting members. In 1976, for example, the Commission comprised 65 regular members and 35 consulting members.  In 1973, two historians (Eric Gray Forbes, UK, and Olaf Pedersen, Denmark) were made members of IAU on the basis of their attainments in history of astronomy.[13] Throughout its existence C41 maintained very close relationship with IUHS/IUHPS. ICSU Year book for 1994 (p. 104) mistakenly refers to C41 as a joint IAU- IUHPS Commission.[14]  C41 acquired this formal status only in 2001.

C41, which really began working at the 1952 General Assembly, had its priorities defined from day one. Overcoming language barriers, contemporary Western scholarship should be integrated and the archival material (including correspondence between astronomers) residing in Russia made accessible to all.  Carrying out translations and the preparation of bibliographies were taken up in right earnest. Indeed, in the early years, the activities of C41 were summarized through bibliographies.

It was not merely pooling of resources but also integration of frameworks. Because of its Communist ideology, USSR emphasized social history of science. It was interested ‘ in the problems of the development of science in connection with the evolution of human society’.[15] Also since the Soviet Union comprised a vast spread in geography, ethnicity and culture, its histories of astronomies were broad-based. In contrast, Western Europe for its own reasons was at the time primarily concerned with modern astronomy and its European antecedents.

It would have come as a surprise to many that even during the troubled war time, USSR found time to commemorate in 1942-1943 the 300th/400th birth/death anniversaries of Copernicus, Galileo and Newton in a scholarly manner and bring out publications. In 1948, Naum Ilich Idelson edited letters from Laplace, Gauss and Bessel to I. Shubert, member of the Petersburg Academy of Sciences, in the first volume of a work titled Scientific Inheritance. [16] The same year saw the publication of a study on ancient Armenian calendar.

In 1955, an editorial board led by Kulikovskii initiated an ambitious and eminently successful programme for bringing out an annual issue of collection of papers titled Istorico-astronomitcheskie Issledonavia [IAI]. The collection included original papers and investigations as well as archives, documents, correspondence of scientists and memoirs. Each issue ended with an annotated bibliography of selected sources of world literature. Starting with the forth issue (1958), English version of contents and editorial preface was also included. The first eight annual issues covering the period 1955-1962 ran into as many as 3786 pages. IAI contents formed an important part of  the bibliography included in the  proceedings of C41. Their importance  can be gauged from the fact that the newly started British Journal of History of Science, in its first two volumes (1963 and 1964),  asked Kulikovsky to summarize the contents of all issues of IAI published to date. [17],[18]

Much of the work on history of astronomy done in the Soviet Bloc falls in three broad categories. (i) First, there was the new interpretation of the works of such well-known names as Copernicus and Humboldt. When Dingle’s 1956 lecture on Edmond Halley was translated into Russian, some editorial remarks were added. (ii) Secondly, the area of history of European astronomy was broadened and deepened. Interaction of instrument makers like James Short and J. Bird and of W. Herschel with Russia was discussed on the basis of primary source material not taken into account so far and their correspondence with Russians brought to the notice of scholars for the first time. Anniversaries associated with individuals and institutions provided a pretext for initiating or intensifying historical researches. The 350th birth anniversary of Jan Hevelious, 200th birth anniversary of the Polish scientist Jan Sniadetski, 150th anniversary of Tartu Observatory, and 125th anniversary of Pulkovo Observatory all resulted in publication of useful material.

(iii) Because of the presence of Central Asian Republics in USSR and for other reasons, attention was paid to astronomy in the Muslim culture zone. Star catalogues of al-Biruni (973-1048), Omar Hajam(1040-1123) and al-Tusi (1201-1274) were published in Russian for the first time under the guidance of Professor B. A. Rosenfeld. G. At the same time notice was taken of the state of astronomical knowledge and cosmological ideas in medieval India as contained in al-Biruni’s  book Indica.[19]

It was not sufficient to make Russian-language archival material available in English. Even English material had to be made more easily accessible. C41 and IUHPS took the initiative in asking the Royal Greenwich Observatory to permit the microfilming  of its records of the past three centuries. The 500th birth anniversary of Copernicus was celebrated in 1973 at various levels throughout the world. As Own Gingerich, President C41 explained, it ‘provided an unprecedented opportunity for the recognition of the history of astronomy as a serious discipline’.[20]

Earlier, at the 13th General Assembly held at Prague in 1967, a resolution was passed recognizing ‘the importance and usefulness of preparing an international history of astronomy, based on original research’. The general editorship of the proposed General History of Astronomy, to be brought out under the auspices of IAU (through C41) and IUHPS was entrusted to Michael Hoskin, who founded the Journal for the History of Astronomy in 1970. The project hoped to cover the period from antiquity till 1950 in four volumes. Eventually only three monographs seem to have been published between 1984-1995. Volume 4A, Astrophysics and Twentieth-Century Astrophysics (edited by Own Gingerich),  came out in 1984. Volumes  2A  and 2B,  Planetary Astronomy from the Renaissance to the Rise of Astrophysics (edited by Rene Taton and  Curtis Wilson), came out in 1989 and 1995. These works have stood the test of time as can be seen from the fact that they have recently been reprinted.


In the early decades, astronomy was perceived as an entirely intellectual discipline whose history had to be extracted from an examination of archives, instruments and buildings. There is now greater appreciation of the civilizational role astronomy has played at different times in different cultures and societies. In the 1970s, a new interdisciplinary research area was emerging to which terms like archaeo-astronomy, ethno-astronomy and cultural astronomy have been applied. In December 1972, the Royal Society and British Academy organized a joint symposium in London on The Place of Astronomy in the Ancient World.[21] For USA, ancient astronomies of the Americas were of more than academic interest. In 1973, a joint USA-Mexico special session was held in Mexico on Archaeoastronomy in Pre-Columbian America. It proved out to be so successful that a second conference on this topic took place, in 1975 in USA, at Colgate University, New York.   In the meantime, John Eddy, spurred by a ‘one-column inch’ report in the Denver Post Sunday Magazine, carried out personal field work on the Bighorn Medicine Wheel in Wyoming. In 1974, he published an epoch-making paper suggesting that the original purpose of the Wheel was astronomical and that it showed solar and stellar alignments. [22] Whhel was  In 1975 summer, thanks to a research grant provided by the National Geographic Society, John A. Eddy led a small team including an archaeologist which carried out an aerial and ground survey of 20 rock structures on the plains of Alberta and Saskatchewan. [23]

IAU took notice of this emerging new field in 1976. At the General Assembly held that year in Grenoble, the C41 organized a session on ‘Megalithic Astronomy: Fact or Speculation’. Not surprisingly, it attracted a large audience from other Commissions as well.[24] Scholarship on the subject has developed to such an extent as to be assigned an IAU Symposium (No. 278) in 2011 for a full-length rigorous discussion. Alive to the role astronomy has played in human affairs, IAU and UNESCO jointly organized a Symposium (No. 260) on ‘The Role of Astronomy in Society and Culture’ at UNESCO Headquarters, Paris in January 2009. This was the first time, IAU included in its prestigious Symposium series a scientific meeting that lay outside hard science.

The history of IAU Commission on History of Astronomy covers its first three decades. As we get closer to the present epoch, history becomes more complex. May be the later period will also be covered.

Astronomy is a symbol of the collectivity and continuity of humankind’s cultural heritage. As Goethe put it, ‘The history of science is science itself’. This is certainly true of astronomy.




[1] Sperling, N. (1991) The Central Bureau for Astronomical Telegrams: A case study in astronomical internationalism.  Griffith Observer, June, pp. 2-17.

[2] Stratton, F. J. M. (1934) Monthly Notices of Royal Astronomical Society, Vol. 94, No. 4 (Feb.),  pp. 361-372; see p. 365.

[3] Hale, G. E. and Perrine, C. D. (1904) International cooperation in solar research, Science, Vol. 20, pp. 930-931.

[4] Trimble, V. (1997) What, and Why, is the International Astronomical Union? Beam Line, Winter , pp. 44-45.

[5] Ref. 2, p. 367.

[6] The Research Council was renamed International Council of Scientific Unions in 1931. In 1998, the name was shortened to International Council for Science, even though the old acronym ICSU was retained.

[7] Adams, W. S. (1949) Publications of the Astronomical Society of the pacific, Vol. 61, No. 358 (Feb.) , pp. 5-12; see p. 8.

[8] Minnaert, M. (1955) Vistas in Astronomy, Vol. 1, No. 1, pp. 5-11: see p. 9.

[9] Shapley, H. (1946) Science, Vol. 108, p. 558.

[10] Gurshtein, A. (2004) Journal for the   History of Astronomy, Vol. 35, No.118, pp. 120-121; see p. 120..

[11] Petitjean, P. (2006)  UNESCO and the creation of the International Union of History of Science. In: Sixty Years of Sciences at UNESCO, 1945-2005 (eds: Petitjean, P. et al), UNESCO, p. 81.

[12] Transactions of IAU (1952) Vol. 8, p. 623.

[13] Transactions of IAU (1976) Vol. 16, p. 199.

[14] Culture and Cosmos (2002) Vol. 5,  No. 2.

[15] Kulikovsky, P. G. (1963/1964) British Journal for the History of Science, Vol. 1, p. 391; Vol. 2, pp. 84-89.

[16] Transactions of IAU (1952) Vol. 8, p. 628.

[17] Kulikovsky, P. G. (1963) British Journal for the History of Science, Vol. 1, No. 4, p. 391.

[18] Kulikovsky, P. G. (1964) British Journal for the History of Science, Vol. 2, No. 1, pp. 84-89.

[19] Ref. 18, p.88.

[20]  Transactions of IAU (1976) Vol. 16, p. 199.

[21] Philosophical Transactions (1974) Vol. A 276, No. 1257

[22] Eddy, John A. (1974) Science, Vol. 184, No. 4141, pp. 1035-1043

[23] http://www.kstrom.net/isk/stars/starkno8.html

[24] Douglas, A. Vibert (1977) J. Roy. Astr. Soc. Canada, Vol. 71, p. 57.